Extensions 1→N→G→Q→1 with N=C23×C10 and Q=S3

Direct product G=N×Q with N=C23×C10 and Q=S3
dρLabelID
S3×C23×C10240S3xC2^3xC10480,1211

Semidirect products G=N:Q with N=C23×C10 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C23×C10)⋊1S3 = C5×A4⋊D4φ: S3/C1S3 ⊆ Aut C23×C10606(C2^3xC10):1S3480,1023
(C23×C10)⋊2S3 = C2×C10×S4φ: S3/C1S3 ⊆ Aut C23×C1060(C2^3xC10):2S3480,1198
(C23×C10)⋊3S3 = C5×C22⋊S4φ: S3/C1S3 ⊆ Aut C23×C10406(C2^3xC10):3S3480,1200
(C23×C10)⋊4S3 = C242D15φ: S3/C1S3 ⊆ Aut C23×C10606(C2^3xC10):4S3480,1034
(C23×C10)⋊5S3 = C22×C5⋊S4φ: S3/C1S3 ⊆ Aut C23×C1060(C2^3xC10):5S3480,1199
(C23×C10)⋊6S3 = C244D15φ: S3/C1S3 ⊆ Aut C23×C10406(C2^3xC10):6S3480,1201
(C23×C10)⋊7S3 = C5×C244S3φ: S3/C3C2 ⊆ Aut C23×C10120(C2^3xC10):7S3480,832
(C23×C10)⋊8S3 = C2×C10×C3⋊D4φ: S3/C3C2 ⊆ Aut C23×C10240(C2^3xC10):8S3480,1164
(C23×C10)⋊9S3 = C245D15φ: S3/C3C2 ⊆ Aut C23×C10120(C2^3xC10):9S3480,918
(C23×C10)⋊10S3 = C22×C157D4φ: S3/C3C2 ⊆ Aut C23×C10240(C2^3xC10):10S3480,1179
(C23×C10)⋊11S3 = C24×D15φ: S3/C3C2 ⊆ Aut C23×C10240(C2^3xC10):11S3480,1212

Non-split extensions G=N.Q with N=C23×C10 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C23×C10).1S3 = C10×A4⋊C4φ: S3/C1S3 ⊆ Aut C23×C10120(C2^3xC10).1S3480,1022
(C23×C10).2S3 = C2×A4⋊Dic5φ: S3/C1S3 ⊆ Aut C23×C10120(C2^3xC10).2S3480,1033
(C23×C10).3S3 = C10×C6.D4φ: S3/C3C2 ⊆ Aut C23×C10240(C2^3xC10).3S3480,831
(C23×C10).4S3 = C2×C30.38D4φ: S3/C3C2 ⊆ Aut C23×C10240(C2^3xC10).4S3480,917
(C23×C10).5S3 = C23×Dic15φ: S3/C3C2 ⊆ Aut C23×C10480(C2^3xC10).5S3480,1178
(C23×C10).6S3 = Dic3×C22×C10central extension (φ=1)480(C2^3xC10).6S3480,1163

׿
×
𝔽